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Abstract

In order to present basic equations for static and dynamic analyses of a class of truss structures called tensegrity
structures, large-deformation kinematics and kinetics were presented in both Eulerian and Lagrangian formulations.
The two sets of equations of motion yield the same values even if different stress and strain measures were employed for
their computation. The Eulerian formulation was implemented in an updated Lagrangian finite element code using
Newton’s method with consistently linearized equations of motion. By utilizing the linearized Lagrangian equations of
motion at pre-stressed initial configurations, harmonic modal analyses of a three-bar tensegrity module and a six-stage
tensegrity beam were conducted. In the second part of the paper, linearized equations were utilized to investigate the
equilibrium configurations of basic tensegrity modules and the stiffness of pre-stressed tensegirty structures. © 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Tensegrity is a class of truss structures, which consist of pin-jointed tension and compression members.
According to Marks and Fuller (1973) and Pugh (1976), tensegrity consists of discontinuous bars or
compression members suspended by a continuous network of cables or pure tension members. The
tensegrity structure was invented by Kenneth Snelson in 1948 (Schultz, 1981). Buckminster Fuller named
Snelson’s structure ““tensegrity” and conglomerated tensegrity domes by extending his concept of geodesic
domes (Marks and Fuller, 1973). In a recent article on tensegrity, Ingber (1998) illustrated a wide variety of
natural systems from nano to mega scales, which are assembled with the tensegrity architecture.

The class of tensegrity structures investigated in this paper exhibits “inferior order of stiffness’” noted by
Clerk Maxwell (1864, 1890) if

Mx = ng — ny <0, (1)
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(a) (b)

Fig. 1. Cyclic cylindrical (a) three-bar and (b) four-bar tensegrity modules.

where Mx is referred to as the Maxwell number, ng is the number of elements, and ny is the number of
unknown degrees-of-freedom after constraining a truss against rigid body motion. Fig. 1(a) and (b) il-
lustrate a three-bar cyclic cylindrical tensegrity module and a four-bar module, investigated by Tarnai
(1980). The base and top nodes form equilateral triangles in Fig. 1(a) and squares in Fig. 1(b). The top
triangle and square are twisted with respect to the base triangle and square by n/2 + n/3 and =n/2 + =n/4,
respectively, in the counterclockwise direction from the position where the bars are vertical. In the figure,
thick lines denote bars while thin lines illustrate cables. When the pre-stressed modules were subjected to
vertical loads in the negative z-direction, the initial response was soft and accompanied by large defor-
mation of swinging bars in the counterclockwise direction. As the loads increased, the stiffness of the load—
displacement curve quadratically increased. An initial deformation mode was referred to as “infinitesimal
mechanisms™ (Calladine, 1978; Tarnai, 1980; Pellegrino and Calladine, 1986) and was resisted by the
stiffness on the order of pre-stress.

A recent trend in smart structural systems is to endow flexible structures with control engineering
(Skelton and Sultan, 1997). In this endeavor, infinitesimal mechanisms of tensegrity structures have become
an advantage for deployable and shape-controlled structures for easy manipulation (e.g. Motro, 1990;
Furuya, 1992; Hanaor, 1993). Controlled tensegrity structures (Skelton and Sultan, 1997) achieve smartness
by control systems, thereby extending the applications of smart structures.

A majority of previous works on the mechanics of tensegrity structures benefited from the large de-
formation analysis of pre-stressed cable networks by Argyris and Scharpf (1972). Cable networks are
similar to tensegrity structures in their need for finding initial geometry and pre-stress modes. However,
they differ in geometrical arrangements.

The objective of this paper is to furnish basic equations for both static and dynamic analyses of
tensegrity structures based on large deformation kinematics and kinetics of trusses. For this purpose, the
equations of motion are developed both in Eulerian formulation at the current configuration and in La-
grangian formulation with reference to a pre-stressed initial configuration. (The Eulerian and Lagrangian
formulations are often referred to as the spatial and material formulations, respectively.) Linearized
equations of motion are used to conduct modal analyses of a three-bar tensegrity module and a tensegrity
beam. All linear models developed for various applications of tensegrity structures are only valid in the
neighborhood of a reference configuration at which linear equations are obtained. Therefore, it is im-
portant that all linear models share the same basic assumptions and are consistently expanded. In the
present approach, all linear models are derived from the same nonlinear truss equations. In the second part
of this paper, the linear and nonlinear equilibrium equations are employed to investigate pre-stress modes,
infinitesimal mechanism modes, and stiffness of cylindrical tensegrity modules.
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2. Deformation kinematics

A motion of a truss structure with ny nodes in Euclidean space R? is described by the nodal coordinates
xg(#) with respect to an inertial Cartesian coordinate system {x;, x», x3} and time ¢. The global node
numbers, 1,2, ..., ny, identify the nodes of the entire truss structure, while local nodes 1and2 identify the
end nodes of each truss element, as illustrated in Figs. 1 and 2. A relationship between the global and local
node numbers for each element establishes the element connections. Let ng denote the total number of truss
elements. The union of centroidal axes of truss elements, Q((f>, e=1,2,... ng, in a pre-stressed reference
configuration at time ¢ = 0 is denoted by Q. At time ¢, the deformed current centroidal axes occupy region
Q, consisting of the truss elements Q ) e= 1,2,...,ng. To establish the evolution of xg(¢), one needs the
nodal velocities, wg(z), which are governed by the conservatron laws.

Let a material point X on Q( deform to x on Q , as shown in Fig. 2. The deformation is expressed by
the mapping

x = x(X, 7). 2)
The mapping is also defined by introducing the displacement field u(X, ¢) as
x(X, 1) =X+ u(X,7). (3)

The straight centroidal axis of each truss element is assumed to remain straight under large translation and
rotation involving uniaxial tension or compression.

Let the rectangular Cartesian coordinate system attached to the cylinder of truss element (e) in the
reference configuration Q@ be denoted by {@, 0,, @3}@ where @, denotes the length coordinate of the
centroidal axis and the @2, @3-plane defines the plane of cross-section. The axial dlrectlon of element (e) is
denoted by G = (dX/d@,)" with the un1t vector pointing from local node 1 to node 2. The mass density,
area of cross- sectlon and length of Q are denoted by p, ), A(() >, and 10 , respectively. The mass per un1t
axial length is mO = (pydo). An 1nﬁn1tesrmal truss volume element is expressed as dV (poA d@l)

In truss elements, it is assumed that each cross-section normal to the centr01dal axis remains normal
during deformation. Therefore, in the current deformed configuration Q ¢}, the convected {0, 0,, @3}@
coordinate system remains orthogonal. Let the rectangular Cartesran coordlnate system aligned with the
convected coordlnate system be denoted by {0, 05, 93} . The 9 -coordinate is the length parameter of the
centroidal axis Q. The axial direction of element (e) is denoted by g = (dx/d6,)" with the unit Vector
pointing from local node 1 to node 2. The deformation gradient F of (2) with respect to the {0;, 65, 03}
and {@}, 0,, @3} coordinate systems is expressed in terms of principal stretches:

Fig. 2. A truss element in the current and reference configurations.
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do
d_@]l 0 0

F=|0 g2 0], (4)
0 0 9%

do;

where d0,/d®, = d0;/dO; in each plane of cross-section.

The mass density, area of cross-section, and length of Q,@ are denoted by pﬁe), Aﬁe), and ZE"), respectively.
The mass per unit axial length is m'” = (p,4,)". An infinitesimal truss volume element is d¥, =
(p,A,d0,)".

Let superposed dots and D/Dr signify the material time differentiation by holding X. The velocity field of
Q®) is expressed by v¥)(0,) defined on Q' or u®(©,) defined on fo). In the sequel, it becomes necessary to
compute div v on the centroidal axis. The computation of div v on the centroidal axis requires a consistent
approximation of the velocity field on each cross-section with the three-dimensional conservation laws.
Therefore, basic truss equations are derived from those of the three-dimensional theory of elasticity. The
following three-dimensional kinematical relations are utilized (Marsden and Hughes, 1983):

dv, = Jdr, J = Jdivv, (5a,b)

in which J is the Jacobian. For a truss element the Jacobian becomes

A (e) do (e)
(o0 — 2t had
J (AO) (d@1> | (6a)

By taking the material time derivatives of Eq. (6a) and using Eq. (5b), one obtains the material time de-
rivative of the cross sectional area A,:

At(€> = A;e)(diVV — d“)(e)7 (6b)
where d,; is the axial stretch-rate defined on Qf“’) as
dv dl)l
dy = — .6 ——~ 6
11 d@l g d@l ’ ( C)

in which v; = v - g is the axial velocity component. It is noted that Eq. (6b) furnishes the value of div v on
the centroidal axis in terms of d; and A, without explicitly approximating the velocity field on each cross-
section.

3. Conservation of mass

The three-dimensional conservation of mass is written as
Pl = Pos p.+ p,divy =0, (737 b)

where Eq. (7a) is expressed with respect to X for the Lagrangian (material) formulation, while Eq. (7b) is
expressed with respect to x for the Eulerian (spatial) formulation. From Eq. (7a), the conservation of mass
for an infinitesimal truss element is obtained as

. de, (e) .

If the stretch ratio, df;/d®,, is uniform over the element, Eq. (8a) can be integrated to yield
(m 1) = (moly). (8b)
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The spatial form of Eq. (8a) is obtained from Eq. (7b), m, = p,4,, and Eq. (6b) as follows:
I’i’l(g) =+ (m[d“)(e) =0. (8C)

t

4. Elastic constitutive equations

In this paper, truss elements are characterized as nonlinearly elastic materials. Three-dimensional elastic
response under isothermal deformation is described by using the Helmholtz free energy per unit mass, ¥, in
terms of the second Piola—Kirchhoff stress tensor S and the Lagrangian strain tensor E (e.g., Marsden and
Hughes, 1983):

4
S:poa_E7 (9a)

in which E is defined in terms of the deformation gradient F and the 3 x 3 identity matrix I; as
E=1F'F-1L), (9b)

where ( )T signifies the transpose of ( ). Both S and E are defined on the reference configuration €.
The rate form of Eq. (9a) becomes

S=C:E, (9c)
where C is the fourth-order elastic modulus tensor:
oy
g = pO m . (9d)

Eqgs. (92)—(9d) are defined on the reference configuration and are utilized for the Lagrangian formulation.
For the Eulerian formulation, the above relations are expressed in terms of the Cauchy stress tensor ¢ and
its Truesdell rate, 6%, defined on the current configuration, (for the derivation in terms of the vector-valued
Cauchy stress two-form used by Brillouin (1964), see the Appendix of Frankel (1997)). The relationship
between the second Piola—Kirchhoff stress tensor S and the Cauchy stress tensor ¢ defined on €, is

1
= - FSF". 10
The rate constitutive relation, (9¢), transforms to
o =c:d, (10b)

where d is the rate of deformation tensor and c is the Piola transform of the elastic modulus tensor g
(Hughes and Pister, 1978; Marsden and Hughes, 1983):

1
¢ = FFFFC. (10c)

Since it is assumed that truss elements are under uniaxial tension or compression, stress components

other than Sj; or ¢y; vanish. For elastic truss elements, Eq. (9a) reduces to
d¥
Stdo = mg— 11
114o modE“’ (11a)

where the axial Lagrangian strain Ej; is defined as

dx - dx — dX - dX = (d6,)> — (dO,)* = 2E,(dO, ). (11b)
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The rate form of Eq. (11a) is expressed as

Si1dy = YodoEny, (12a)
where the tangent elastic modulus Y4, is defined as
d’y
Yodo = mo—-. 12b
049 = My d E121 ( )

For linearly elastic materials, Y is independent of E|; and becomes Young’s modulus. For truss elements,
relation (10a) reduces to

do

ond, = 511A0<d@11> (13)
Under uniaxial stress condition, the rate relation (10b) reduces to

o}y =61+ on(divy —2diy) = Ydi, (14a)
where the current axial stiffness is

do,
Y4, = YA 14b
1t 0410 (d@] ) ( )

From Egs. (14a,b) and (6b), the material time derivative of the axial resultant force is expressed as

D

E(UllAt) = (Y, +on)ddy- (15)

Eq. (15) is also derived from Eq. (12a) and the material time derivative of Eq. (13).

5. Eulerian equations of motion

The position vector x and the velocity vector v constitute basic kinematic variables in the Eulerian
formulation. The kinematics of a truss structure are described by using 3 ny x 1 nodal coordinate vector
x(?), nodal velocity vector wg(7), and nodal acceleration vector wg(?). The nodal acceleration is governed
by the equations of motion. In the sequel, components of all nodal vectors are defined with respect to the
global coordinate system {x;, x;, x3}.

To obtain the equations of motion, consider a free-body-diagram of an infinitesimal line element A0, of
Q,() illustrated in Fig. 3. In the figure, g© = (dx/d@l)(e) denotes a unit axial vector. The infinitesimal el-
ement is subjected to the Cauchy traction (¢,,4,g)'®) and the external resultant force per unit axial length,
(m/b)'©), due to both lateral surface traction and body forces. Newton’s second law applied to the infini-
tesimal element in Fig. 3 facilitates

d e . e
a0, (014,8)" + (mb)') = (m¥)", (16)

where v is the acceleration vector.
The traction boundary condition at node j subjected to a concentrated nodal force f; is expressed as

S oudg) =1, j=1,2,....ny, (17)

¢

in which the summation is over the elements which meet at node j. In Eq. (17), the sign of gl is —1,if node j
in element (e) is local node 1 and +1, if node j 1s local node 2.
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mbAG, o 40,+16)g

Fig. 3. Eulerian kinematics and kinetics of a deformed truss element.

To transform Eq. (16) and the nodal traction boundary conditions (17) into the principle of virtual work
or velocity on the current configuration Q;, a one-parameter family of admissible deformation dv is in-
troduced by freezing time ¢. Virtual velocity components vanish on the boundary, if the corresponding
velocity components are prescribed. Let n, x 1 column matrices w and éw represent unknown nodal-values
of the velocity field v and the corresponding virtual velocity field v defined on ,. The prescribed nodal
velocities with nc = 3 ny — ny components are not included in w, but they are included in wg.

The principle of virtual work becomes

S| {ddiond, — 8v-m(b—¥)}d0l —dw - fx =0, (18a)
where dj; is the stretch rate defined by Eq. (6¢), dd); denotes the virtual stretch rate:

@ d (e)
Bdn = (d—elavg) s (lgb)

and fy is an ny x 1 column matrix, whose elements describe the nodal concentrated forces. By substituting
Eq. (18b) into Eq. (18a) and integrating by parts, one obtains Eq. (16) on QE") and the traction boundary
conditions (17) at each node as the Euler-Lagrange equations.

Let 6 x 1 matrices w'®) and dw(®) denote, respectively, nodal velocities and virtual nodal velocities of
element (¢), each storing the ith velocity components of local node 1 in the ith element and that of local
node 2 in the (i + 3)rd element. Both the velocity and virtual velocity fields on Q£e> are linearly interpolated
by using w'¢) and dw'¢), respectively, as

ve(0,) = NCwE vl () = Nswe), (19a,b)
where N(¢) is the 3 x 6 interpolation matrix defined as
N<e> = [Nl(gl)lz Nz(@l)lj;](e), (190)

in which N;(0,) and N,(6,) are shape functions:

@ 0, (e) @ 0, (e)
N7 (0)=1—- (> , N (60,) = <> . (19d,e)

The substitution of Egs. (19a)—(19d) into Eq. (18a) with Eq. (18b) yields
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ng
S owe - [M“’)w(e) +p — fé"’)} —Sw-fx =0, (20a)
e=1

where M@, p"©, and fff) denote, respectively, the element mass matrix, the element internal force vector,
and the element external force vector due to the distributed body force (m,b)<e):

1 2I; 1
(e) — = (e) 3 3
MO =gt |5 (200)
g1
P = { g } (6114.)", (20¢)
o)
e ! o)’ e e
£l = / N© (m)“dol. (20d)
0
The global-to-local mapping from w in R" to w'®) in R® as well as dw in R"" to dw(® in R® is expressed by
an ny x 6 matrix, Lg®), whose rows consist of the natural unit vectors e, e, ... ,e,, in R™:
w = Lg“w, dwl® = Lg©dw. (21a,b)

For example, if the jth component of the element velocity vector w'¢) is the ith component of the global
velocity vector w, then the jth row of Lg(¢) becomes the transpose of e; in R" (e.g., LM array of Hughes,
1987). The same global-to-local projection is used between the global and elemental internal-force vectors, p
and p'®), and the global and elemental body-force vectors, f, and f,(¢). By using Egs. (21a,b), Eq. (20a) is
expressed in global quantities as

ow - [My +p— 1] =0, (22a)
where
f=1fy+1, (22b)
and the assembled global quantities are defined as
ng
M=) L MELg, (22¢)
e=1
ng T
p=> Lg¥p¥, (22d)
e=1
PTG
f,=> Lg 1. (22¢)
e=1

Since dw is arbitrary, one obtains the FE equations of motion expressed on the current configuration €;:
Mw +p —f(¢) =0, (23)

where M is the global mass matrix, p is the internal force vector, and f is the external force vector. Viscous
damping forces, if they exist, are included in p. A well-posed initial value problem is defined by Eq. (23)
with Egs. (22b)—(22e), (15) and (14b), and prescribed time evolution of f(¢), as well as the initial conditions
at time ¢ = 0 for w(0) and xg(0). Tensegrity structural analysis and design differ from those of simple and
compound spatial trusses. Designers must find a self-equilibrium configuration and choose the amplitude of
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a pre-stress mode. In the first part of the paper, it is assumed that the initial configuration and pre-stresses
are prescribed. The initial equilibrium analysis of basic tensegrity modules will be presented in the second
part of the paper.

An updated Lagrangian code was developed by using the Newmark method for the time integration of
Eq. (23) (e.g., Bathe, 1982; Hughes, 1987). The integration scheme presented by Hughes and Winget (1980)
was employed for integrating Eq. (15). Further, to achieve a second-order convergence rate in iterations
between ¢ and ¢ + A¢, Newton’s method was used. This method requires the definition for the residual force,
which is the left-hand side of Eq. (23), and the consistently linearized equation of Eq. (23) to find improved
approximation (Hughes and Pister, 1978). The derivation of linearized equations of Eq. (23) with respect to
a pre-stressed configuration is deferred to the next section. The updated Lagrangian code was used to
investigate the stability and stiffness of tensegrity modules in the second part of the paper. In the code, if the
compressive force of a cable element exceeded a critical load during shortening, the tangent stiffness as-
sociated with the compressive force was reduced to 107¢(Y; + ;) to mimic cable slacking (Murakami et al.,
1998).

Let s(0) be the ng x1 column matrix of the initial element forces, whose eth element is
(a1 lA[)@ = (8 IAO)(E) at t = 0. The initial equilibrium equation (23) reduces to

p(0) = As(0) =0, (24a)
where the ny x ng equilibrium matrix A at ¢t = 0 is defined from Egs. (20c) and (22d) as
A=|a a - a,] (24b)
[ —g"
a, = Lg® { g } . (24c¢)

In Eq. (24c), the nonzero entries of the eth column of A consist of the direction cosines, g = G at r = 0.
The initial equilibrium Eq. (24a) holds without any assumptions. However, if the external force f is placed
on the right-hand side of Eq. (24a), the resulting equilibrium equation with A, defined by Eq. (24c) at t = 0,
holds only for small deformations.

6. Lagrangian equations of motion

For Newton’s method and modal analyses, linearized equations of motion with respect to a pre-stressed
state are required. The basic equations are facilitated here in the Lagragian or material formulation. The
deformed configuration Qf") at time ¢ is described by the displacement field u®'(@,,¢) defined on the ref-
erence element Qg@ at t = 0, whose axial-length is parameterized by @,. The basic kinematic variables of the
Lagrangian formulation are u and u. The kinematics of a truss is, therefore, described in terms of the initial
nodal coordinate vector Xg, the unknown nodal displacement vector d, and the nodal velocity vector d. The
equations of motion render d from which d and d are computed by time integration. The current nodal
position vector is obtained by using Eq. (3) as xg = Xg + dg.

The Lagrangian strain Ej; is obtained from Eq. (11b) as

du 1 du du

E :G~— N ——
t d0, "2de, de,’

(25a)
by using

(e)
dx = g€¥doV = (G + du de\, (25b)
de,
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m, BAG, do
Ly Su@ a0 g
de,
-85,0,0—4, g . (0
e, u(0,,r) d;
2
(e)
i Q,
X
} d (e)
)/K A |
’ 0] 5
X, 0 X, 1 A®, X

Fig. 4. Lagrangian kinematics and kinetics of a deformed truss element Q,(") with reference to the reference truss element fo Vatr=0.

e dX e e e
dx‘© = d—@ld@ﬁ )= GYdeY. (25¢)
The Lagrangian equations of motion are obtained by expressing on fo) the Cauchy traction (anA,)(e) and
the body force (m,b)"“, which are defined on Q') by using the deformation map (3). The Cauchy traction
(a”A,)(") defined on Qf‘” is expressed in terms of the first Piola—Kirchhoff stress P;; or the second Piola—
Kirchhoff stress Sj; by using the Piola transformation (Marsden and Hughes, 1983; Frankel, 1997):

do
PANE — !
(Pird) (d@1

In Eq. (26), both (PHAO)@ and (S“Ao)(e) are defined on Qée), while (anAt)("> is defined on Qfe). The body
force term is easily expressed on Qée) as B(@,,1) =b(0,(0,)). Newton’s second law applied to the free-
body-diagram in Fig. 4 renders the Lagrangian equations of motion

(e)
) (S11de)® = (114,)". (26)

d do, S4 (o) o B)(e) y ..)(e) (27)
de, \ de, 11408 my = (mou)"".
To express Eq. (18a) on €y, dy; and dd; are expressed by Eyy and 8E,, respectively as
dé, . [de;\’ dso, .. [dey\’
di a0, 11<d61 > ) dy a0, 11 a0, (28a,b)

Eq. (28a) is obtained by taking the material time derivatives of Eq. (11b).
By using Eqs. (26) and (28a), one finds the following relations for the strain-energy rate and the virtual
strain-energy rate:

(511E11A0d01)<6) = (011d11Azd91)(8)7 (29a)

(S“SE“A()d@l)(e) = (0116d11A,d91)<8). (29]3)

A one-parameter family of admissible deformation on Q¢ with respect to fo) is described by the virtual
velocity field u®. The nodal values of du'® are represented by the virtual nodal velocity vector d. The
principle of virtual work expressed on €, becomes

g

5o :
> / {8E181140 — 81 - mo(B — i1)}9d0' — 8d - fyy = 0. (30a)
_ 0
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If one takes the material time-derivative of Eq. (11b) with Egs. (25b,c), the strain rate and velocity relation
is found

. du \“ du : du \“ déu
E11 (G + d@] ) d@1 s 1) 11 (G + d@] > d@] (30b,C)

By using Eq. (30c), one can show that Eq. (30a) yields Eq. (27) and the nodal traction boundary conditions
(17) expressed on Qf)") by using Eq. (26) as the Euler—Lagrange equations.

In the Lagrangian formulation, both u and du are linearly interpolated on fo) by using nodal velocity
d® and virtual nodal velocity 8d', respectively, as

i9(61,1) = NP, sa(of,1) = N8, (31a,b)
where N is the 3 x 6 interpolation matrix:
N<Le) = [M(0))]; Nz(@l)lﬂ(e), (31c)
and the shape functions, N;(0,) and N,(0,), are defined on Q’ as
¢/ e 0,\" N 0\
wer=1-(2) wer=(2)" (31d,¢)

In Egs. (31a,b), the first three components of d© and 8d" are those for local node 1, while the remaining
three components are those for local node 2. The strain rate and the virtual strain rates (30b,c) become

£ =BOd€,  §E9 = B9sde), (32a,b)
where
1 1\ [ L -1
() — 4 T T1() L ()" 3 —I3
BY =5 [-G" G"]" + (ﬂ”) d [13 L } (320)
0 0

In the second part of the paper, the second term on the right-hand side of Eq. (32c) will be used to explain
the hardening response of tensegrity modules with increasing mechanism-mode displacements.
For the linear interpolation (31a)—(31e), the deformation map (3) on fo) yields

() (3)"

By substituting Egs. (31a)-(32b) into Eq. (30a), one finds

iad@ : [Mf%’i@ +p - f,gﬂ —8d-fy =0, (34a)
e=1
where M\, p\, and £¢ are defined as
My zé(molo)“‘)ﬁ? 21133], (34b)
©_ 1[GV, 1L —L)w| e,
P = { G } +l((f)[_l3 I, ]d 1511(t)140 ) (34c¢)

/©
£ = / " NY (moB)de". (34d)
0
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By using Egs. (8b), (26), (32) and (25b) with Eq. (31), it can be easily shown that the values of Mf), p(Le), and
fEfL) in Eqgs. (34b)—(34d) are equal to those of M, p@©, and f§,€> in Egs. (20b)—(20d).

The global-to-local projection, e.g., from d in R" to d in RS is defined in a similar manner to Eq.
(21a,b). By assembling elemental quantities for global quantities by using Lg(¢), the Lagrangian FE
equations of motion are obtained:

Myd +p, (1) = (1) = 0, (35)

where the values of the mass matrix, the internal force vector, and the external force vector are identical to
those in Eq. (23). However, Egs. (23) and (35) differ in their domains of definition as well as in the stress and
deformation measures employed for their computation.

When an element experiences large rigid-body translation and rotation involving nodal displacements on
the order of element length, the calculation of the second term on the right-hand side of Eq. (34c) causes the
subtraction of two similar numbers and triggers numerical divergence.

7. Linearized equations of motion

Let the pre-stressed state Q, at t =0 be a reference state with pre-stress Sf‘f)(O). The pre-stress may
approximately satisfy the initial equilibrium with the residual force {(0) = f(0) — p(0). By utilizing the
consistent linearization method presented by Hughes and Pister (1978), Eq. (35) can be linearlized for small
nodal displacement vector d(¢) on £, as

M,d + Krd — f,(¢) = {(0), (36a)

where the symmetric tangent stiffness matrix Kr is defined as

ng

Kr = Lg K{'Lg®, (36b)
e=1
YoA (e) GGT _GGT (e) S (O)A (e) 1 . |
(€) _ 0do 11 0 3 3
Kz _< ls ) {—GGT GG" } +< Is ) [—13 I } (36¢)

The first term on the right-hand side of Eq. (36¢) is the stiffness matrix used for small deformation analysis,
while the second term denotes stiffening effects by pre-stresses. The elemental force increment from the pre-
stressed configuration for small time increment At is computed by integrating Egs. (12a), (32a) and (32c)
with d = 0. Similarly, the linearized equation (35) at time ¢ is obtained by substituting (Y.4,/ lt)(e) for
(Yodo/1o)", g for G, (ay,(1)4,/1,)" for (S11(0)40/10)*, and {(¢) for {(0) in Eq. (36a—c).

Argyris and Scharpf (1972) derived the tangent stiffness matrix for small strain, but for large defor-
mation problems. If Eq. (36¢) is translated for small axial deformation, d,/d®, ~ 1, using Egs. (13), (14b)
and (15), Eq. (22) of Argyris and Scharpf is recovered. They referred the first and the second terms of Eq.
(36¢) on the right-hand side as the “elastic”” and “geometrical” forces, respectively. In Eq. (36¢) the pre-
stress stiffening effect is “isotropic” at each node due to its appearance through I;. For geometrically
nonlinear analysis of kinematically determinate trusses without infinitesimal mechanisms, it is economical
to employ the approximation of large deformation with “moderate rotation” (Przemieniecki, 1968). In the
approximation, only nonlinear terms induced by transverse displacements are retained. This “inconsistent”
linearization should not be used for tensegrity structures, since the model incorrectly exhibits anisotroic
pre-stress stiffening instead of isotropic stiffening. It will be shown in the second part of the paper that the
stiffness of infinitesimal mechanism displacements only comes from the second term on the right-hand side
of Eq. (36¢).
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8. Dynamic analysis of tensegrity structures

The dynamic response of pre-stressed tensegrity structures can be investigated by conducting modal
analyses. To this end, the linearized equations of motion (36a) is utilized. The tangent stiffness matrix
defined by Egs. (36b,c) includes the effect of pre-stress and is positive definite for tensegrity structures,
which exhibit first-order infinitesimal mechanisms (Koiter, 1984). Consider a harmonic motion of the form
d=d exp(iwt), where d is the amplitude and o is the angular frequency. The generalized FE eigenproblem
is obtained from Eq. (36a) as

Kd = »’Md. (37)

The above eigenproblem can be solved by either using the Lanczos method (Hughes, 1987) or the subspace
iteration method (Bathe, 1982).

Modal analyses were conducted on a three-bar cylindrical tensegrity module in Fig. 1(a). For the nu-
merical examples, bars and cables are assumed to be made of steel with Young’s modulus ¥, = 200 GPa and
mass density p = 7860 kg/m>. The geometrical properties are the radius of circumscribing circles 1 m, the
height of the three-bar module 1 m, the radius of circular cylindrical cables 0.001 m, and the inner and outer
radii of hollow circular cylindrical bars 0.018 and 0.022 m, respectively. The element force of the bar was
changed from —200 to —1000 N. The corresponding compressive stress of the bar was between 0.4 and 1.99
MPa. Fig 5(a) and (b) illustrate by solid lines, the first and second modes of the three-bar tensegrity. The
dashed lines show the initial pre-stressed configuration. The natural frequencies at the bar pre-stress —0.8
MPa are 1.49 and 35.00 Hz for the first and the second modes, respectively. To display complicated figures,
each set of four figures include a perspective view in the first quadrant and three orthographic projections in
the second, third, and fourth quadrants. The initial equilibrium analysis of the three-bar tensegrity module,
presented in the second part of the paper, reveals that the static deformation is dominated by an infini-
tesimal mechanism mode of swinging bars in the counterclockwise direction. The first mode in Fig. 5(a) is
almost identical to the infinitesimal mechanism mode, while deformation modes with nonzero element
elongation appear as high frequency modes. The change of the natural frequencies with increasing values of
bar pre-compression is shown in Table 1. The stiffness of the first mode is due to the pre-stress term in Eq.
(36¢), while the stiffness of the second, third and fourth modes are due to the axial stiffness and the pre-
stress terms.

The modal analysis was also conducted on a six-stage tensegrity beam, illustrated in Fig. 6, which was
built by stacking the three-bar modules with alternating twisting directions and by adding additional strings

Fig. 5. (a) The first mode and (b) the second mode of the three-bar tensegrity module.
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Table 1
The natural frequencies of the lowest four modes for various pre-stresses
Pre-stress of bars (MPa) First mode (Hz) Second mode (Hz) Third mode (Hz) Fourth mode (Hz)
0.40 1.05 34.99 34.99 68.44
0.80 1.49 35.00 35.00 68.45
1.19 1.83 35.01 35.01 68.46
1.59 2.11 35.03 35.03 68.47
1.99 2.36 35.04 35.04 68.47

(a) (b)

Fig. 6. (a) The first mode and (b) the second mode of a six-stage tensegrity beam.

(Skelton and Sultan, 1997; Murakami et al., 1998). The first and the second modes of the 6-stage tensegrity
beam were shown in Fig. 6(a) and (b), respectively. It has been observed that the mechanism modes of three
twisting bars in the direction of the twist angle are basic deformation mechanisms of the tensegrity beam. In
the first mode in Fig. 6(a), the axial deformation of the beam is accomplished by adjacent counter-twisting
sets of three bars. Therefore, the first mode is a globally longitudinal mode. The second mode in Fig. 6(b)
appears as a flexural mode. The first mode represents an infinitesimal mechanism mode of the beam, and
the natural frequency is much smaller than that of the second mode similar to the three-bar cylindrical
tensegrity module.

9. Concluding remarks

In order to furnish a set of equations for static and dynamic analyses of tensegrity structures, equations
of motion for spatial trusses were developed within the framework of three-dimensional theory of elasticity
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for large deformation. It was found that the pre-stress stiffening effect appears isotropically in each node. In
harmonic modal analysis near pre-stressed initial configurations, infinitesimal mechanisms were observed as
the mode shape corresponding to the lowest natural frequency. The natural frequencies of infinitesimal
mechanism modes increase proportionally to the square root of the amplitude of pre-stress. The natural
frequencies of deformation modes with nonzero elastic force in Eq. (36c) do not change significantly with
increasing pre-stress amplitudes.
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